
SORTING

Biswajit Prasad
Assistant Professor

Department of Computer Science
Maharaja Manindra Chandra College

Calcutta 700 003

Sorting Basics

 Internal Sorting: Entire data is sorted in main
memory (no. of data elements is limited)

• External Sorting: Data resides in disk or tape and
sorting is performed on the data on such media.

• Assumed that data can be ordered based on some
comparison operation.

• Time complexity depends on the no. of comparisons
 to perform the sort.

Insertion Sort

 Take the next element from the unsorted array. Insert it into the proper
 place in the already-sorted sub-array.

Example
0 1 2 3 4 5 6

Null G D Z F B E

Null D G Z F B E

Null D G Z F B E

Null D F G Z B E

Null B D F G Z E

Null B D E F G Z

Algorithm 1

a[0] = <a low sentinel value>
 for i = 2 to n do
{

temp = a[i]; loc
= i;

while (a[loc-1] >temp) do
{

a[loc]
 loc

= a[loc-
1];
= loc-1;}

a[loc] =
temp;

}

Algorithm 2

for i = 2 to n do{
temp =a[i]; loc=i;
While (loc>1) and (a[loc-1]>temp)) do
{a[loc]=a[loc-1];
loc=loc-1;
}

a[loc]=temp;
}

Analysis of Insertion Sort

Best case

Already ordered array:
The inner while loop is never entered.
Outer loop is processed n-1 times.
Thus, time complexity is O(n)

Worst Case

Array is initially in reverse order: Inner
while loop is executed i-1 times
Outer for loop is processed for i from 2 to n

n
Thus, time complexity =∑(i-1)= ½ n2 – ½ n

i=2
=O(n2)

Analysis of Insertion Sort …

Average Case

For a randomly sorted array, on an average we will need to
search through one-half of the sub-array to find a proper
location for temp.

Thus inner while loop is executed (i-1)/2 times.
n

Therefore time complexity =∑(i-1)/2 =1/4 n2-1/4 n
i=2

=O(n2)

Selection Sort

• Find the minimum of the unsorted Sub-array. Exchange this
 with first element of the sub-array.

1 2 3 4 5 6
Z G E D B F

B G E D Z F

B D E G Z F

B D E G Z F

B D E F Z G

B D E F G Z

Algorithm

for i = 1 to n-1 do
{

minindex=i; for j = i+1 to n
do
{

if (a[j] < a[minindex])
 then minindex=j;

}
swap(a[i], a[minindex]);

}

Analysis

For ordered, random or reverse ordered data:
The outer for loop executes n-1 times.

The inner for loop executes n-i times

n-1
Time complexity=∑(n-i)=1/2

n2-1/2 n= O(n2)

i=1

Merge Sort

Divide-Conquer-Recombine

Divide the array into two halves, sort both these sub-arrays
 using the same procedure recursively and combine the
sorted sub-arrays by merging.

G B N E M P V H

G B N E M P V H

G B M P V H

G B N E HVM P

N
E

B G E N M P H V

B E G N H M P V

B E G H M N P V

Algorithm

mergesort:
if (first < last)

 then
{

mid

=

(first + last)/2;
mergesort(a, first, mid);
mergesort(a, mid+1, last);
 merge(a, first, mid, last);

}

Analysis

Merge sort repeatedly divides the problem in half. This
generates a tree of log2n + 1 levels.
At each level, approximately n comparisons are made to
 accomplish the merger of the sub-arrays.

Thus, Time Complexity = O(n log n) Regardless of
the input permutations.

If n is a power of 2,
T(2n) = 2T(n) + O(n), T(2) = 1;
Solution is T(n) = O(n log n)

(recurrence relation)

Quick Sort

Divide and Conquer

Select a pivot element.
Partition the array into two sub-arrays, one containing
elements smaller then the pivot and the other containing
elements greater then the pivot. Sort the sub-arrays using
 the same procedure recursively.

P
G

S

E
C M
H B

DV

D
E C B

M S
H V P

G

B C E P

V
S

HD G M

V

S

PH MGEDB C

B C D E G H M P VS

B C D E G H M P S V

Algorithm
• Quicksort: if (first <last)

then{ Partition(a, first, last, loc); Quicksort(a, first, loc-1);
Quicksort(a, loc+1, last);

}

• Partition: i = first;
loc = last+1; pivot = a[first];
while i<loc do
{ repeat i = i+1; until (a[i] >= pivot);
repeat

loc = loc-1;
until (a[loc]  pivot);
if (i<loc)
Then
swap(a[i], a[loc]);

}
swap (a[first], a[loc]);

Analysis

Running time depends on input permutation and pivot
selection.

If the pivot always partitions the array into two equal
parts,

T(n) = 2T(n/2) +O(n). T(2)=1;
Solution is T(n)=O(n log n)

If the array is already sorted and pivot is a[first],
Time complexity becomes O(n2) !!!(Quicksort becomes
 “Slowsort” - Remedy??)

Heap

A heap is a sequence of elements K1, K2……,Kn

where Ki ≥ K 2i & Ki ≥K 2i+1 1 ≤ i ≤ n
(Maxheap)

A sequence can be arranged as a tree:-
k1

K2 K3

K4 K5 K6 K7

K8 K9 K10 K11 K12 K13

K14

K15

The heap property : the value of each node is greater than or equal to its children.

Heap Sort

If the input array is arranged as a heap, the first element of the array is
 the largest. We exchange the first and last element. Thus, now the last
 element is in proper position. We rearrange the new heap consisting
of the first through the last but one element. Heap Sort is an iteration
of this procedure.

Heap Example

H F G E A D C B

H

F G

E A D C

B

Algorithm

Percolate –down (A, i, N):
For (tmp = A[i]; leftchild(i) < N; i =

child) { child = leftchild(i);
if (child != N-1 && A[child+1] > A[child])

 child++;
if (tmp < A[child])

A[i] = A[child];
else break;
}
A[i] = tmp;

Algorithm…

Heapsort:
for (i = N/2; i>=0; i--)

Percolate-down(A, i, N);
// Build-heap

for (i = N-1; i > 0; i--) {
Swap (A[0], A[i]);

Percolate-down(A, 0, i);//rearrange heap
}

Analysis

 Percolate-down requires O(log N) iterations

• Bulidheap iterates O(N) times
• Time complexity of Buildheap is O(NlogN)

• Swapping max with the last is done O(N) times
• Each rearrange heap takes O(logN) time
• Time complexity of second for loop is O(NlogN)

• Time complexity of Heapsort is O(NlogN)

Bucket Sort

 Input array A consists of only positive integers
smaller than M

 Keep an integer array Count of size M, initialized
with all 0s

 Read array element A[i] and increment Count[A[i]]
 After all input array elements are read, scan the

array Count and write Count[i] no. of element i in A
 Requires O(M) extra space
 Time complexity is O(M+N)
 If M is O(N), total time complexity is O(N)

Other issues

 For sorting large structures, swapping may take a lot
of time

 Use pointers to such structures and swap the
pointers instead of the actual structures

• Stable Sort: Sorting algorithms where input data
elements with the same value appear in the output
array in the same order as they do in the input array,
are called Stable sorting algorithms.

• Stable sorting is required while sorting on multiple
keys.

	SORTING
	Sorting Basics
	Insertion Sort
	Algorithm 1
	Algorithm 2
	Analysis of Insertion Sort
	Analysis of Insertion Sort …
	Selection Sort
	Algorithm
	Analysis
	Merge Sort
	G B N E M P V H
	Algorithm (2)
	Analysis (2)
	Quick Sort
	Slide 16
	Algorithm (3)
	Analysis (3)
	Heap
	Heap Sort
	Heap Example
	Algorithm (4)
	Algorithm…
	Analysis (4)
	Bucket Sort
	Other issues

